An explicit stability estimate for an ill-posed Cauchy problem for the wave equation

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stability of an inverse problem for the discrete wave equation

Using uniform global Carleman estimates for semi-discrete elliptic and hyperbolic equations, we study Lipschitz and logarithmic stability for the inverse problem of recovering a potential in a semi-discrete wave equation, discretized by finite differences in a 2-d uniform mesh, from boundary or internal measurements. The discrete stability results, when compared with their continuous counterpar...

متن کامل

the algorithm for solving the inverse numerical range problem

برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.

15 صفحه اول

An ill-posed boundary value problem for the Helmholtz equation on Lipschitz domains

The paper is concerned with properties of an ill-posed problem for the Helmholtz equation when Dirichlet and Neumann conditions are given only on a part Γ of the boundary ∂Ω. We present an equivalent formulation of this problem in terms of a moment problem defined on the part of the boundary where no boundary conditions are imposed. Using a weak definition of the normal derivative, we prove the...

متن کامل

An ill-posed mechanical problem with friction

Many models involve the Coulomb’s law in order to describe dynamical properties of friction phenomena. In order to generalize this Coulomb’s law and to deal with its correct mathematical expression, we study a nonlinear equation where we take into account a maximal monotone graph. In the particular case of Coulomb’s law, existence and uniqueness are proved. But in the general case, only existen...

متن کامل

A comparison of regularizations for an ill-posed problem

We consider numerical methods for a “quasi-boundary value” regularization of the backward parabolic problem given by { ut + Au = 0 , 0 < t < T u(T ) = f, where A is positive self-adjoint and unbounded. The regularization, due to Clark and Oppenheimer, perturbs the final value u(T ) by adding αu(0), where α is a small parameter. We show how this leads very naturally to a reformulation of the pro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 1991

ISSN: 0022-247X

DOI: 10.1016/0022-247x(91)90417-x